

Edition 3.0 2014-01

TECHNICAL REPORT

Optical fibres – Reliability – Power law theory

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.180.10

ISBN 978-2-8322-1369-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FOF	REWORD)		5		
INT	RODUCT	ION		7		
1	Scope			8		
2	Normati	ve referenc	ces	8		
3	Symbols	\$		8		
4	General	approach.		. 10		
5	Formula	types		.10		
6			ters for fibre reliability			
•	6.1	•				
	6.2		d equivalent length			
	6.3	-	parameters			
	0.0	6.3.1	Overview			
		6.3.2	Proof-testing			
		6.3.3	Static fatigue			
		6.3.4	Dynamic fatigue			
	6.4		rs for the low-strength region			
	-	6.4.1	Overview			
		6.4.2	Variable proof test stress			
		6.4.3	Dynamic fatigue			
	6.5	Measured	numerical values	. 17		
7	Example	es of nume	rical calculations	. 17		
	7.1	Overview.		. 17		
	7.2		e calculations			
		7.2.1	FIT rate formulae			
		7.2.2	Long lengths in tension			
		7.2.3	Short lengths in uniform bending			
	7.3	Lifetime ca	alculations	.22		
		7.3.1	Lifetime formulae	.22		
		7.3.2	Long lengths in tension	.22		
		7.3.3	Short lengths in uniform bending	.23		
		7.3.4	Short lengths with uniform bending and tension	.25		
8	Fibre we	eakening ar	nd failure	.26		
	8.1	Crack grov	wth and weakening	.26		
	8.2	Crack frac	ture	. 28		
	8.3	Features of the general results29				
	8.4	Stress and	d strain	. 30		
9	Fatigue	testing		. 30		
	9.1	Overview.		.30		
	9.2	Static fatigue				
	9.3	Dynamic f	atigue	. 32		
		9.3.1	Overview	. 32		
		9.3.2	Fatigue to breakage	. 32		
		9.3.3	Fatigue to a maximum stress	. 34		
	9.4	Comparisons of static and dynamic fatigue				
		9.4.1	Intercepts and parameters obtained	. 34		
		9.4.2	Time duration	. 34		

		9.4.3	Dynamic and inert strengths		
		9.4.4	Plot non-linearities		
		9.4.5	Environments		
10	Proof-testing				
	10.1	Overview			
	10.2	The proof	test cycle		
	10.3	Crack weakening during proof-testing			
	10.4	Minimum	strength after proof-testing		
		10.4.1	Overview		
		10.4.2	Fast unloading		
		10.4.3	Slow unloading	40	
		10.4.4	Boundary condition	41	
	10.5	Varying th	ne proof test stress	41	
11	Statistic	al descript	ion of strength by Weibull probability models	41	
	11.1	Overview		41	
	11.2	Strength s	statistics in uniform tension	41	
		11.2.1	Unimodal probability distribution	41	
		11.2.2	Bimodal probability distribution	43	
	11.3	Strength s	statistics in other geometries	43	
		11.3.1	Stress non-uniformity	43	
		11.3.2	Uniform bending	44	
		11.3.3	Two-point bending	45	
	11.4	Weibull analysis for static fatigue before proof-testing			
	11.5	Weibull analysis for dynamic fatigue before proof-testing4			
	11.6	Weibull distribution after proof-testing			
	11.7	Weibull analysis for static fatigue after proof-testing5			
	11.8	Weibull a	nalysis for dynamic fatigue after proof-testing	53	
12	Reliabili	ity predictio	on	54	
	12.1	Reliability	under general stress and constant stress	54	
	12.2	Lifetime a	and failure rate from fatigue testing	55	
	12.3	Certain su	urvivability after proof-testing	56	
	12.4	Failures in	n time	57	
13	B-value:	: eliminatio	n from formulae, and measurements		
	13.1	Overview			
	13.2	Approxim	ate Weibull distribution after proof-testing	58	
		13.2.1	Overview	58	
		13.2.2	"Risky region" during proof-testing	58	
		13.2.3	Other approximations		
	13.3	Approxim	ate lifetime and failure rate	61	
	13.4	Estimation	n of the <i>B</i> -value	62	
		13.4.1	Overview	62	
		13.4.2	Fatigue intercepts	62	
		13.4.3	Dynamic fatigue failure stress	62	
		13.4.4	Obtaining the strength	62	
		13.4.5	Stress pulse measurement	63	
		13.4.6	Flaw growth measurement	63	

Annex A (informative) Statistical strength degradation map	64
Bibliography	65
Figure 1 – Weibull dynamic fatigue plot near the proof test stress level	16
Figure 2 – Instantaneous FIT rates of 1 km fibre versus time for applied stress/proof test stress percentages (bottom to top): 10 %, 15 %, 20 %, 25 %, 30 %	19
Figure 3 – Averaged FIT rates of 1 km fibre versus time for applied stress/proof test stress percentages (bottom to top): 10 %, 15 %, 20 %, 25 %, 30 %	19
Figure 4 – Instantaneous FIT rates of bent fibre with 1 m effective length versus time	21
Figure 5 – Averaged FIT rates of bent fibre with 1 m effective length versus time for bend diameters (top to bottom): 10 mm, 20 mm, 30 mm, 40 mm, 50 mm	21
Figure 6 – 1 km lifetime versus failure probability for applied stress/proof test stress percentages (top to bottom): 10 %, 15 %, 20 %, 25 %, 30 %	23
Figure 7 – Lifetimes of bent fibre with 1 m effective length versus failure probability for bend diameters (bottom-right to top-left): 10 mm, 20 mm, 30 mm, 40 mm, 50 mm	24
Figure 8 – Static fatigue – Applied stress versus time for a particular applied stress	31
Figure 9 – Static fatigue – Schematic data of failure time versus applied stress	32
Figure 10 – Dynamic fatigue – Applied stress versus time for a particular applied stress rate	32
Figure 11 – Dynamic fatigue – Schematic data of failure time versus applied stress rate	34
Figure 12 – Proof-testing – Applied stress versus time	38
Figure 13 – Static fatigue schematic Weibull plot	47
Figure 14 – Dynamic fatigue schematic Weibull plot	48
Figure A.1 – Schematic diagram of the statistical strength degradation map	64
Table 1 – Symbols	8
Table 2 –FIT rates of 1 km fibre in Figures 2 and 3 at various times	20
Table 3 – FIT rates of 1 metre effective length bent fibre in Figures 4 and 5 at various times	22
Table 4 – FIT rates of Table 3 neglecting stress versus strain non-linearity	22
Table 5 – 1 km lifetimes in years of Figure 6 for various failure probabilities	23
Table 6 – Lifetimes of bent fibre with 1 metre effective length in years of Figure 7 for various failure probabilities	24
Table 7 – Lifetimes in years of Table 6 neglecting stress versus strain non-linearity	245
Table 8 – Calculated results in case of bend plus 30 % of proof test tension for 30 years	

INTERNATIONAL ELECTROTECHNICAL COMMISSION

OPTICAL FIBRES –

Reliability – Power law theory

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights.

The main task of IEC technical committees is to prepare International Standards. However, a technical committee may propose the publication of a technical report when it has collected data of a different kind from that which is normally published as an International Standard, for example "state of the art".

IEC/TR 62048, which is a technical report, has been prepared by subcommittee 86A: Fibres and cables, of IEC technical committee 86: Fibre optics.

This third edition cancels and replaces the second edition published in 2011, and constitutes a technical revision.

The main changes with respect to the previous edition are listed below:

- correction to the unit of failure rates in Table 1;

- correction to the FIT equation for instantaneous failure rate [19]¹ in addition to all call-outs and derivations;
- insertion of a new note about fibre length dependency of failure rates;
- addition of informative Annex A and relevant reference;
- editorial corrections of inconsistencies.

The text of this technical report is based on the following documents:

Enquiry draft	Report on voting	
86A/1537/DTR	86A/1554/RVC	

Full information on the voting for the approval of this technical report can be found in the report on voting indicated in the above table.

This publication has been drafted in accordance with the ISO/IEC Directives, Part 2.

The committee has decided that the contents of this publication will remain unchanged until the stability date indicated on the IEC web site under "http://webstore.iec.ch" in the data related to the specific publication. At this date, the publication will be

- reconfirmed,
- withdrawn,
- replaced by a revised edition, or
- amended.

A bilingual version of this publication may be issued at a later date.

IMPORTANT – The 'colour inside' logo on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer.

¹ Numbers in square brackets refer to the Bibliography.

INTRODUCTION

Reliability is expressed as an expected lifetime or as an expected failure rate. The results cannot be used for specifications or for the comparison of the quality of different fibres. This technical report develops the theory behind the experimental principles used in measuring the fibre parameters needed in the reliability formulae. Much of the theory is taken from the referenced literature and is presented here in a unified manner. The primary results are formulae for lifetime or for failure rate, given in terms of the measurable parameters. Conversely, an allowed maximum service stress or extreme value of another parameter may be calculated for an acceptable lifetime or failure rate.

For readers interested only in the final results of this technical report – a summary of the formulae used and numerical examples in the calculation of fibre reliability – Clauses 6 and 7 – are sufficient and self-contained. Readers wanting a detailed background with algebraic derivations will find this in Clauses 8 to 12. An attempt is made to unify the approach and the notation to make it easier for the reader to follow the theory. Also, it should ensure that the notation is consistent in all test procedures. The Bibliography has a limited set of mostly theoretical references, but it is not necessary to read them to follow the analytical development in this technical report. Annex A introduces a statistical strength degradation (SSD) map which gives intuitive understanding of the physical meaning of the formulae appearing in Clauses 10 and 11.

NOTE Clauses 8 to 12 reference the B-value, and this is done for theoretical completeness only. There are as yet no agreed methods for measuring B, so the Bibliography gives only a brief analytical outline of some proposed methods and furthermore develops theoretical results for the special case in which B can be neglected.

OPTICAL FIBRES –

Reliability – Power law theory

1 Scope

This technical report is a guideline that gives formulae to estimate the reliability of fibre under a constant service stress based on a power law for crack growth.

NOTE Power law is derived empirically, but there are other laws which have a more physical basis (for example, the exponential law). All these laws generally fit short-term experimental data well but lead to different long-term predictions. The power law has been selected as a most reasonable representation of fatigue behaviour by the experts of several standard-formulating bodies.

2 Normative references

The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC 60793-1-30, Optical fibres – Part 1-30: Measurement methods and test procedures – Fibre proof test

IEC 60793-1-31, Optical fibres – Part 1-31: Measurement methods and test procedures – Tensile strength